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Daughter crystals in orientation relationship with a parent crystal are called

variants. They can be created by a structural phase transition (Landau or

reconstructive), by twinning or by precipitation. Internal and external classes of

transformations defined from the point groups of the parent and daughter

phases and from a transformation matrix allow the orientations of the distinct

variants to be determined. These are algebraically identified with left cosets and

their number is given by the Lagrange formula. A simple equation links the

numbers of variants of the direct and inverse transitions. The equivalence classes

on the transformations between variants are isomorphic to the double cosets

(operators) and their number is given by the Burnside formula. The

orientational variants and the operators constitute a groupoid whose

composition table acts as a crystallographic signature of the transition. A

general method that determines if two daughter variants can be inherited from

more than one parent crystal is also described. A computer program has been

written to calculate all these properties for any structural transition; some results

are given for Burgers transitions and for martensitic transitions in steels. The

complexity, irreversibility and entropy of fractal systems constituted by

orientational variants generated by thermal cycling are briefly discussed.

1. Introduction

Phase-transition materials are constituted by grains of the

same phase (for example �) that, when some thermo-

dynamical conditions are changed, are transformed into many

crystals of the same phase (for example �) with an orientation

relationship (OR). These daughter crystals are called variants.

The physical and mechanical properties of phase-transition

materials highly depend on the microstructure formed by

these variants. For example: (i) the martensite laths obtained

by quenching or rapid cooling increase significantly the yield

strength of steels; (ii) the twins that appear during deforma-

tion or recrystallization allow a stress relaxation in copper; or

(iii) the nanoprecipitates that nucleate during ageing treat-

ments give a structural hardening to aluminium alloys. These

cases and many more (ferroelectric, ferroelastic and magnetic

domains) have been treated in different fields of materials

science with different approaches.

The aim of the present study is to show that a unique

crystallographic description of these different situations can

be given by using a unifying algebraic structure called a

groupoid. Groupoids were first introduced to determine the

quadratic forms of a given norm (Brandt, 1926). As for groups,

they have a direct analogy in geometry. They can be used in

many scientific domains because, as clearly pointed out by

Stewart (2004), they are ‘more flexible and often more

appropriate than the better-known groups’. They are actually

the ideal tool for describing symmetries that apply only to

parts of systems containing repeated units, such as, in our case,

systems constituted by variants.

Since this study has been motivated by the understanding

and the exploitation of some experimental diffraction results

by electron back-scattered diffraction (EBSD) and transmis-

sion electron microscopy (TEM), only the orientations of the

crystals are treated (and not their positions nor the atomic

structures of the interfaces). From now on, the word

‘symmetry’ will refer only to orientational symmetries (and

the associated point group) and the word ‘variants’ will refer

to orientational variants. Firstly, we give a brief overview of

the different crystallographic studies about variants. These

studies use similar algebraic tools but most of them do not

introduce explicitly the orientation relationship between the

parent and the daughter crystals, and the variants are not

mathematically identified. Secondly, we define the orienta-

tional variants by introducing the notions of internal and

external equivalence classes on transformation matrices and

by using some general algebraic tools of group theory. Direct

and inverse transitions will be treated. Operators will be

introduced as classes of transformations between variants.

Finally, we show that the set of variants and the set of trans-

formations that link them do not form a group but a groupoid.

A method that gives the possible parent crystals from the

knowledge of some daughter crystals is also described. A

simple geometrical case (Fig. 1) will be used as an example

during the study. However, for complex reconstructive tran-

sitions, as the geometrical considerations are limited (they



require a great capacity for visualizing complicated three-

dimensional objects), a computer program has been written to

calculate all the variants, the transformations between them,

the different possibilities of parent crystals and the composi-

tion table of the groupoid. Its application to Burgers transi-

tions and martensitic transitions in steels will be presented. We

will briefly explain on these examples how to use the

composition table of groupoids to reconstruct parent crystals

from EBSD data [for more details on this application, see

Cayron et al. (2006)]. The problem of the generation of high-

order variants during thermal cycling and the related funda-

mental problems will be discussed in the last section.

We have decided to sum up the algebraic notions used in

this paper in Appendices A and B. The reader is invited to go

over them to at least be familiar with the mathematical

notations. Some are described by Janovec et al. (2003). The

reader can also refer to Milne (2003) or to Kargapolov &

Merzliakov (1985) for an introduction to group theory.

2. An overview of crystallographic studies of variants

2.1. Landau transitions

Landau has studied the thermodynamic of phase transitions

when a group–subgroup relation exists between the parent

and daughter symmetries (Landau, 1937a,b; Tolédano &

Tolédano, 1987). The order parameter of the transition

depends on the nature of the transition (it is an atomic posi-

tion or a degree of occupancy etc.) and the theory relies on the

assumption that the form of the free energy should continue to

respect the symmetries of the higher symmetric phase (the

phase stable at high temperature) even at temperatures lower

than the transition temperature. Although restrictive, this

approach was fruitful: it has permitted us to show that crys-

tallography has a direct effect on the thermodynamics of a

phase transition. In this special case of group–subgroup rela-

tionships between the parent and daughter crystals, geome-

trical objects called orientational domains or variants have

been introduced (but not explicitly mathematically defined)

from the algebraic decomposition of the symmetry group of

the parent phase G into left cosets of the point group of one of

the daughter crystals (denoted H or F, depending on the

authors). The algebraic developments were done for ferro-

electric domains (Janovec, 1972, 1976) and for variants

generated by Landau order–disorder transitions (Van

Tendeloo & Amelinckx, 1974).

Janovec introduced the term ‘domain states’ to refer to any

physical property attached to the daughter phase crystals such

as the polarization of ferroelectric domains. The first domain

state is denoted S1. All the symmetry elements of G that leave

S1 invariant form a group called the stabilizer of S1, denoted F1

(with F for ferroic). It was shown that the number of distinct

domain states is given by the decomposition of G into left

cosets of F1:

G ¼ g1F1 [ g2F1 [ . . . [ gNF1: ð1Þ

A deep algebraic study of orientational and translational

variants is also given in Dirl et al. (1997) by considering the

space groups of the two phases.

The algebraic base used by Van Tendeloo is similar to that

of Janovec. A variant is an ‘object’ Vi invariant by a subgroup

of G denoted Hi, i.e. HiVi = Vi. The other variants Vj are

defined from Vi by an element g of G such that gVi = Vj and

g =2 Hi. The point or space group of the parent phase is then

decomposed as left (or right) cosets of Hi such as in equation

(1). Van Tendeloo uses the term ‘variant’ to refer to a crystal

oriented with reference to the parent crystal but no mathe-

matical definition was given. Since the orientation can be

considered as a crystal property, Janovec’s description

includes Van Tendeloo’s. In both cases, the number of variants

results from the Lagrange theorem: N = |G|/|H|, where |G| and

|H| are the order of the groups.

2.2. Reconstructive transitions

In most minerals and alloys (Fe, Ti, Zr etc.), phase transi-

tions do not respect a group–subgroup relationship. A new

thermodynamic theory of phase transition developed by

Tolédano & Dmitriev (1996) resolves this problem by gener-

alizing the Landau approach. However, the general crystal-

lographic and algebraic developments of these transitions are

not as advanced as those presented before for the Landau

transitions. The study of ‘non-disruptive’ transitions1 intro-

duced by Guymont (1981) tries to reduce the gap: the special

case of phase transitions that produce two variants is exten-

sively described but the algebraic developments for the

general case are more limited.

Most of the studies on the reconstructive transitions have

actually been performed in metallurgy for many different
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Figure 1
Two-dimensional example of variants (equilateral triangles) in orienta-
tion relationship with a parent crystal (square). The ‘general’ case is
represented in (a), there are 8 variants; the algebraic structure of the
variants is a group. Two ‘special’ cases are represented in (b) and (c); the
number of variants is then 4 and the algebraic structure is no longer a
group but a groupoid.

1 The term ‘non-disruptive’ relies on the assumption that some symmetry
elements of the new structure (daughter phase) can be described in the frame
of reference of the old one (parent phase). Guymont does not consider these
transitions as reconstructive ones but we think they are, according to the
definition given by Tolédano & Dmitriev (1996).



aims: (i) to determine by EBSD the exact orientation rela-

tionship in steels (Morito et al., 2003; Kitahara et al., 2005); (ii)

to understand the texture evolution during different heat

treatments in Ti alloys (Gey & Humbert, 2003) or in brass

(Standford & Bate, 2005); or (iii) to correlate the fracture

mechanisms of steels to their microstructures (Gourgues et al.,

2000). Indeed, after the transition, the parent grains are

generally hardly visible. Therefore, a key point is the recon-

struction of the parent grains from the data obtained by EBSD

on the daughter grains. The most advanced theoretical studies

on this subject have been proposed by Humbert et al: a

method to calculate the number of orientational variants for

Burgers transitions is given by Humbert et al. (1992) and a

method to determine the orientation of the �-parent grains is

proposed by Humbert et al. (1995) and Humbert & Gey

(2002). However, these studies lack generality. The algebraic

tools used for the Landau transitions (for example the coset

decomposition and the Lagrange theorem) are not explicitly

recognized. Moreover, some results are incomplete (see x9.1).

2.3. Precipitation

Precipitates in an orientation relationship inside a matrix

have been mainly studied to simulate the complex diffraction

patterns obtained by TEM (Akbay et al., 1994; Cayron, 2000).

General theoretical concepts have been given by Cahn &

Kalonji (1981): the orientation relationship between two

crystals of phase I (parent) and phase II (variant) is explicitly

introduced by the linear transformation (R=t), where R is the

rotation that orientates crystal II with reference to crystal I

and t is the translation that gives the position of the lattice of

crystal II with reference to the lattice of crystal I. The set of

symmetry operations of the space group of crystal II, denoted

GII
0 , is written in a reference coordinate system associated with

crystal I:

GII
¼ ðR=tÞGII

0 ðR=tÞ�1: ð2Þ

This equation leads directly to the set of common symmetry

operations: H = GI
0 \ GII, where H is a subgroup of GI

0 called

the ‘intersection group’. It also determines the precipitate

morphology. With arguments similar to those given for the

Landau transitions, the variants of crystals II in matrix I

appear from the left coset decomposition of H into GI
0, and

their number is given, here again, by the Lagrange formula

N ¼ jGI
j=jHj. The concepts introduced by Cahn & Kalonji

(1981) go far beyond the morphologies. They have led to a

general approach of grain boundaries (Gratias & Portier,

1982; Kalonji, 1985) that unifies and clarifies the notions of

coincidence site lattice (CSL), O-lattice and displacement shift

lattice, previously introduced by Bollmann (1970, 1982).

However, the orientation relationships between the variants

are not studied and the algebraic tools (orbits, stabilizers) are

not used as is done for the Landau transitions.

2.4. Twinning

Twinning has been studied for more than a hundred years

(Friedel, 1904) and nowadays is often treated as a phase

transition (by deformation or recrystallization). Thus, one can

be tempted to use the algebraic notions reported in x2.1, but

one must be very cautious because all the concepts developed

for the Landau transitions cannot be directly applied for

twinning. In Hahn & Klapper (2003), K, the so-called

‘composite symmetry group’ is introduced from H, the point

group of an untwinned crystal, and k, a twin law, by a coset

decomposition similar to equation (1). K is believed to be a

supergroup of H (i.e. H is a subgroup of K, as is the case for

the Landau transitions); however, in general, the composite

‘crystal’, strictly speaking, is not a crystal (no point group can

be attributed) and the operations between the ‘partners’ (i.e.

the variants that constitute this composite structure) are only

partial operations. Thus, K is in general not a group. A

rigorous approach to twinning by applying some concepts of

reconstructive transitions (in terms of the non-disruption

condition) and by using the intersection group presented in

equation (2) is given by Wadhawan (1997).

We present now our own approach on the subject. It

includes and unifies all the notions presented before (but of

course not all the particular developments of each case).

Comparisons with past studies are discussed in the Remarks at

the end of each section. The important aim of the present

paper is to show that the algebraic structure constituted by the

variants (created by phase transition, precipitation or twin-

ning) is not a group but a groupoid.

3. Crystals oriented in space, internal symmetries

The term ‘phase’ usually designates a class of materials with

particular physical or chemical properties. In crystallography,

for solid materials, it is restricted to particular types of atomic

bonding and, if the materials are crystalline, the term also

refers to the atomic arrangements, i.e. the atomic positional

symmetry (space-group type) and the metric (metric tensor).

The term ‘crystal’ designates a solid constituted by a crystal-

line phase and orientated in space. In this paper, phases will be

denoted by a Greek character (�) and crystals will also be

denoted by a Greek character (�) with an index when required

(�i). From now on, we consider a crystal only by its orientation

(and not by its position) in a fixed reference coordinate

system. A crystal is then defined by (i) its internal orienta-

tional symmetries (one of the 32 point groups) and (ii) its

orientation in space. We point out that a crystal is more than a

simple oriented lattice (the point group would be reduced to

the holohedry group). The orientation of a crystal is usually

given by three Euler angles; see for example (Kocks et al.,

1998) for the numerous conventions of Euler angles. However,

many different triplets of Euler angles may express the same

orientation because of the internal symmetries. In the present

study, we choose another way to define the orientation of a

crystal. A crystal � will be defined by the set of its equivalent

bases. Two crystals are ‘distinct’ if their sets of equivalent

bases are disjoint and ‘in coincidence’ (or ‘equal’) if their sets

are equal. With this definition, a crystal appears as an

equivalence class on the set of bases (the equivalence classes

are defined in Appendix A). If a unique reference coordinate
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system is used, the geometrical notion of ‘basis’ can be

transformed into a useful algebraic tool, the transformation

matrix.

3.1. Transformation matrices

Let us consider two bases B1 and B2. The basis B2 is formed

by three non-collinear vectors trivially expressed by

a
B2

=B2
¼

1

0

0

2
4

3
5; b

B2

=B2
¼

0

1

0

2
4

3
5; c

B2

=B2
¼

0

0

1

2
4

3
5: ð3Þ

The lower index (with /) represents the basis in which the

vector is written and the upper index represents the basis

constituted by the vector. These vectors can also be expressed

in B1 and they become:

a
B2

=B1
¼

u1

u2

u3

2
4

3
5; b

B2

=B1
¼

v1

v2

v3

2
4

3
5; c

B2

=B1
¼

w1

w2

w3

2
4

3
5:

We denote [B1 " B2] as the transformation matrix between the

two bases (B1, B2). It is given by

½B1 . B2� ¼ a
B2

=B1
; b

B2

=B1
; c

B2

=B1

h i
¼

u1 v1 w1

u2 v2 w2

u3 v3 w3

2
4

3
5: ð4Þ

Since [B1 " B2][B2 " B1] = E (the 3 � 3 identity matrix), it

follows that [B1 " B2]�1 = [B2 " B1]. Moreover, for any inter-

mediate basis B0: [B1 " B2] = [B1 " B0][B0 " B2]. If f is a linear

function expressed in a basis B1 by the matrix F, f is expressed

in a basis B2 by the matrix [B1 " B2]�1F[B1 " B2]. One must be

cautious when interpreting transformation matrices in terms

of linear functions.2

3.2. Orientational symmetries expressed as transformation
matrices, composition rule

We consider a crystal � with the set of its equivalent bases

denoted B� = fB
�
i g. Let us arbitrarily choose one of the

possible bases B
�
1 = ða�; b�; c�Þ 2 B� as a fixed reference

coordinate system. The bases B
�
i of B� are given by the

transformation matrices ½B�
1

" B�
i � = g

�
i , where g

�
i is an orien-

tational symmetry of the crystal �. We denote as G� = fg�i g the

set of all the symmetry operations3, i.e. the point group

of the crystal �. If another basis of the crystal � is chosen as

a new reference coordinate system, for example B�
n 2 B�

instead of B
�
1, then g

�
i becomes in this system ðg

�
i Þ
0 =

[B�
1

" B�
n]�1g

�
i [B�

1
" B�

n] = ðg�nÞ
�1g

�
i g�n , the conjugate of g

�
i by g�n.

Since a group acts on itself by conjugation (G�)0 = G�, we

conclude that G� does not depend on the choice of the

reference basis if this one belongs to B�. In this way, the crystal

is ‘self-referred’ and G� constitutes its internal symmetries.

There is no distinction between the point group of a phase �
and the point group of a � crystal if this one is self-referred.

In order to reduce the length of equations that will be

developed in the following, we note:

g
�
ik ¼ ½B

�
i . B�

k� ¼ ðg
�
i Þ
�1g

�
k: ð5Þ

The fact that the matrices g
�
i are implicitly expressed in the

basis B
�
1 appears in g

�
1 = E and g

�
k = g

�
1k. One may check that

the matrices g
�
ik can be composed according to the following

rule:

g
�
ikg

�
kl ¼ g

�
il ð6Þ

ðg
�
ikÞ
�1 ¼ g

�
ki: ð7Þ

The composition (6) has a mathematical meaning: the indexes

i, k and l follow the composition rule of the trivial pair

groupoid: two pairs (i, k) and (k0, l) can be composed if and

only if k = k0 and then (i, k)(k0, l) = (i, l) as developed in x7.1.

We compare our notation with the one chosen by Janovec.4

3.3. Internal classes of transformation matrices

Now, let us consider a crystal � oriented in space, and B0 an

arbitrary fixed reference coordinate system. One can orientate

this crystal with the help of any transformation matrix from B0

to one of the crystal bases. In other words, the crystal � is

oriented by any matrix of the set {[B0 " B�
n], B�

n 2 B�}. Each

orientation matrix of this set can be decomposed according to:

[B0 " B�
n] = [B0 " B�

1 ][B�
1 " B�

n] = Tg�n, with T = [B0 " B�
1 ].

Hence, the set of all the equivalent transformation (or

orientation) matrices of a crystal � becomes

fTg�n; g�n 2 G�
g ¼ TG�: ð8Þ

We can then introduce an ‘internal’ equivalence relation,

denoted ��I (with I for internal), on the matrices that define

(the OR of) the same crystal �: two transformation matrices

Tk and Tl define the same crystal � if and only if 9(g�k , g�l ) 2

(G�)2 and 9 T an invertible matrix such that Tk = Tg�k and Tl =

Tg�l . This condition can be written without explicit reference to

T (or to the fixed reference coordinate system B0) by noticing

that T�1
k Tl = ðg�kÞ

�1g�l = g�kl. It becomes

Tk �
�
I Tl () T�1

k Tl 2 G�: ð9Þ

TG�, the set of matrices of the orientation of the crystal �,

does not form a group. However, since the ‘left class of

equivalence’ found in group theory (Appendix A) is similar to

condition (9), we will also use the same term for (9). One may
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2 Clearly, if we denote by f and g the linear functions associated respectively
with the matrices F and G expressed in the same coordinate system B0, their
composition f � g (‘first g then f ’) is expressed by the product FG in B0.
However, if we denote by f and g the linear functions associated with the
matrices F = [B0 " B1] and G = [B1 " B2], it must be noted that these matrices
are expressed in different coordinate systems. We can write them in the same
system B0; they become F and FGF�1, respectively, and now it is the
composition g � f (‘first f then g’) that is expressed by FG in B0. We conclude
that the notation fg (= g � f ) is more appropriate to write the composition of
functions associated with transformation matrices.
3 Sometimes the term ‘symmetry operators’ is used, but we will keep this term
for another mathematical concept, i.e. a class of equivalence of symmetry
operations (see x6.2).

4 The notation introduced in equation (5) slightly differs from the one used by
Janovec & Přı́vratská (2003): we use gki instead of Janovec’s gik. Actually,
Janovec notes the ‘switching operation’ that transforms the domain state Si

into Sk: Sk ¼ gikSi. With our notation (5), we write Sk ¼ gkiSi and the
composition rule (6) becomes: if Sk ¼ gkiSi and Sl ¼ glkSk, then Sl ¼ gliSi with
gli ¼ glkgki. The reader may see that this composition is more intuitive than
with the Janovec notation.



also notice that G� acts trivially transitively at the right of the

set TG� (Appendix B).

4. Orientation relationships and external symmetries

4.1. Matrix expression of an orientation relationship

We denote by � a crystal with a fixed orientation and by �i

the crystals of phase � in equivalent orientation relationships

(OR) with �. The crystals �i are generated by a � ! �
structural phase transition, by twinning or by precipitation. We

denote as G� = fg�i g the point group of the phase �. At each

crystal �i can be associated the set of equivalent bases B�i =

fB�i
n g such that f½B

�i

1
" B�i

n �g = G�.

In order to compare a crystal �i to another crystal �j, a

unique reference coordinate system must be chosen, for

example B
�
1 . The OR between the variant �1 and the parent

crystal � is given by the transformation matrix ½B
�
1

" B
�1
1 �

which will be denoted T>. The subscript > represents the

direction of the transition (see x5.2).

T> can be explicitly calculated from the usual form of an OR

given by two couples of parallel and similarly oriented vectors

expressed in their own crystal lattice: u�1 ||u� and v�1 ||v� with

u�1 and v�1 not parallel (see example in Table 1). A third

couple of vectors w�1 ||w� can then be created with w�1 =

u�1 ^ v�1 and w� = u� ^ v� (the calculations of the cross

product are not reported here, they imply expression of the

vectors in an orthogonal coordinate system with the help of

the structure tensors). Now, a new basis Bc common to both

crystals �1 and � is introduced and defined by

½B
�1
1 . Bc� ¼ ½u

�1=jju�1 jj; v�1=jjv�1 jj;w�1=jjw�1 jj�

and

½B�
1 . Bc� ¼ ½u

�=jju�jj; v�=jjv�jj;w�=jjw�jj�

Then, T> is explicitly deduced from the OR by

T> ¼ ½B
�
1 . B

�1
1 � ¼ ½B

�
1 . Bc�½B

�1
1 . Bc�

�1: ð10Þ

We point out that the directions of the ‘parallel and similarly

oriented’ vectors are important if the crystals are not centro-

symmetric.

Since equation (10) gives the OR of the first variant, we

write

T�!�1 ¼ T>: ð11Þ

4.2. External classes of transformation matrices

The parent crystal � has its own internal symmetries, which,

in general, do not correspond to the internal symmetries of the

crystals �i. Using the groupoid formalism (Weinstein, 1996),

we will say that the symmetries of the crystal � act as ‘external’

symmetries for the crystals �i. We now choose the following

indexing rule for the crystals �i:

½B
�
i . B

�i

1 � ¼ ½B
�
1 . B

�1

1 � ¼ T>: ð12Þ

Then, the matrix that defines the orientation of a crystal �i is

given by ½B
�
1

" B
�i

1 � = ½B
�
1

" B
�
i �½B

�
i " B

�i

1 � = g
�
i T>. One may then

write

T�!�i ¼ g
�
i T>: ð13Þ

The set of the transformation matrices T�!�i of all the crystals

�i inherited from the same parent crystal � is

fg
�
i T>; g

�
i 2 G�

g ¼ G�T>: ð14Þ

For example, it means that for an m3m parent crystal the

number of daughter crystals is at maximum equal to |G�| = 48.

However, some of the daughter crystals are in coincidence and

we will see in the next section that their number is actually a

divisor of |G�|.

We can then introduce an ‘external’ equivalence relation,

denoted ��E (with E for external), on the matrices that define

(the OR of) the crystals inherited from the same parent

crystal: two transformation matrices Tk and Tl define two

daughter crystals �k and �l if and only if 9 ðg
�
k; g

�
l Þ 2 (G�)2

and 9 T> an invertible matrix such that Tk = g
�
kT> and Tl =

g
�
l T>. This condition can be written without explicit reference

to T> by noticing that TkT�1
l = g

�
kðg

�
l Þ
�1. The condition

becomes

Tk �
�
E Tl () TkT�1

l 2 G�: ð15Þ

G�T>, the set of orientations of the crystals �i, does not form a

group. However, since the ‘right class of equivalence’

(Appendix A) is similar to condition (15), we will also use the

same term for (15). One may also notice that G� acts trivially

transitively at the left of the set G�T> (Appendix B).

Remark 1. If the two phases � and � are the same, the crystals

� and � are called twinned ‘partners’ and, if the condition of

twin orientation relationship is obeyed (the two crystals have a

common lattice row and a parallel lattice plane), the trans-

formation matrix T�!� of equation (11) corresponds to the

‘twin law’ (Hahn & Klapper, 2003). With cubic crystals, a twin

law is given by a rotation matrix with rational elements

R ¼ 1
� aij, such that aij are integers with no integral factor

(Warrington & Bufalini, 1971) and � is the ratio of the unit

volume of the CSL lattice referred to the unit volume of the

crystal lattice (Grimmer et al., 1974). The present approach

generalizes the twin law or the CSL lattice because no

restriction exists on the vectors u, v, w introduced to define T>;

they can have real coordinates.
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Table 1
Orientation relationship (OR) with a Burgers transition �! �.

Burgers transformation
Parent = � = body-centered cubic (b.c.c.): G� = m3m
Daughter = � = hexagonal close packed (h.c.p.): G� = 6/mmm

(001)�||(110)�
[100]�||[1�111]�



5. Algebraic definition of the orientational variants

5.1. The set of variants

We consider two crystals �i and �j that are variants inherited

from the same parent crystal �, with the associated externally

equivalent transformation matrices T�!�i = g
�
i T> and T�!�j =

g
�
j T>. These two matrices define the orientation of the same

crystal (i.e. the crystals are in coincidence, ‘�i = �j’) if and only

if they are internally equivalent [see equation (9)]:

T�!�i �I

�
T�!�j , ðT�!�i Þ

�1T�!�j 2 G�

, ðg
�
i Þ
�1g

�
j = g

�
ij 2 T>G�T�1

> . Since g
�
ij is also an element of

G�, the condition becomes

T�!�i �I

�
T�!�j , g

�
ij 2 G�

\ T>G�T�1
> : ð16Þ

It must be remembered that T> = ½B
�
1

" B
�1
1 �; therefore, in

equation (16), T>G�T�1
> constitutes the set of symmetry

matrices of the crystal �1 expressed in the basis B�
1 of the

crystal �. As the mapping

 : g! T>gT�1
> ð17Þ

is an isomorphism, T>G�T�1
> =  (G�) is also a group. Since the

intersection of two groups is not always a group, the reader is

invited to verify that the elements of G�
\ T>G�T�1

> effec-

tively form a group that is a subgroup of G�. We denote this

subgroup H� and call it the intersection group as done by

Cahn & Kalonji (1981). More precisely, H� can also be written

H�=�1 because H� depends on T>, which is a function of the two

bases B
�
1 and B

�1
1 (the sign / just means ‘with reference to’). H�

is the set of symmetries common to crystal � and crystal �1. We

recall here that the external morphology of precipitates

embedded in a matrix has the symmetries of the H� group

(Cahn & Kalonji, 1981).

To sum up, two external transformations T�!�i and T�!�j

(elements of G�T>) point to the same daughter crystal (‘�i =

�j’) if and only if they are also elements of T>G�, i.e. if and only

if g
�
ij is an element of

H� ¼ H�=�1 ¼ G�
\ T>G�T�1

> � G�: ð18Þ

The reader may now check that the transformation matrices

giving equivalent ORs of the crystal �i can be deduced from

the matrix presented in equation (13); they form the set

T�!�i ¼ g
�
i H�T>: ð19Þ

Reciprocally, two crystals �i and �j are distinct if and only if

g
�
i H� and g

�
j H� are distinct sets. We denote by g

�
i H� each left

H� coset in G�. The canonical decomposition of G� into left

cosets leads to

G�
¼ g

�
1 H� [ g

�
2 H� [ . . . [ g

�
N�H�; ð20Þ

where g
�
1 = E. Now, each coset is treated as a unique mathe-

matical entity. Their set (i.e. a set of sets) is called the quotient

set; it is denoted G�=H�:

G�=H�
¼ fg

�
1 H�; g

�
2 H�; . . . ; g

�
N�H�
g: ð21Þ

We have proved that each orientation of a crystal �i (each

orientational crystal) is defined by one left H� coset, i.e. an

element of G�/ H�. In all the following, we will associate with

the crystal �i (geometric notion) a left coset (algebraic notion)

by directly writing

�i ¼ g
�
i H�: ð22Þ

The distinct �i will be called orientational variants. Their

number N� in the decomposition (20) is given by the Lagrange

formula

N�
¼ jG�=H�

j ¼ jG�
j=jH�

j: ð23Þ

In the following, we will simply denote V� as the set of the �i

variants:

V� ¼ �i ¼ G�=H�: ð24Þ

In this paper, we will consider that G� acts on V� by classical

left product: for any g 2 G� and �i 2 V�, g�i = g(g
�
i H�) =

ðgg
�
i ÞH

�. For this action,5 the stabilizer of a variant �i is defined

by

StabG� ð�iÞ ¼ fg
�
2 G�; g��i ¼ �ig: ð25Þ

It forms a subgroup of G� also called the isotropy group of �i.

The stabilizer of �1 is Stab
G� ð�1Þ = H� = H�=�1 . The stabilizer

of each variant �i is the intersection group of �i; it is given by

StabG� ð�iÞ ¼ H�=�i ¼ g
�
i H�
ðg
�
i Þ
�1: ð26Þ

g�i H�ðg�i Þ
�1 is the conjugate of H� by g�i . One may verify that it

does not depend on the choice of the representative g
�
i in the

coset �i and that equation (26) can be directly written

H�=�i ¼ �i�
�1
i : ð27Þ

H�=�i then appears as the product of two sets of matrices.6

The present approach can be considered as a generalization

of the previous studies of phase transition and twinning (see

x2):

(a) Landau transitions correspond to the case G�
�G�, then

H� = G� and N� = |G�|/|G�| as already proved by Janovec

(1972) and Van Tendeloo & Amelinckx (1974).

(b) Twinning transitions correspond to the case T> 6¼ E and

G� = G�, then H�
6¼ G� (for twinning with � 6¼ 1). In the case

of cubic materials with � = 3, we find four twinning variants.

Their orientation matrices T�!�i have already been found by

Gottstein (1984). More details will be given by Cayron (2006).

It is of primary importance to note that V� = G�/H� is a

quotient set and, in consequence, does not have a group

structure in general. V� can be considered as a group if and

only if H� is a normal subgroup of G� (denoted H�/ G�, see

Appendix A). Only in this case can V� be called a ‘supergroup’

or ‘composite group’. Moreover,

H� /G�
) 8�i 2 V�; StabG� ð�iÞ ¼ H�; ð28Þ
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5 One must be very careful not to be confused by the type of action used by the
author. For example, Janovec usually uses the conjugate action of G� on its
subgroups H defined by g:H ¼ gHg�1. He uses IgðxÞ for Stabc

G� ðxÞ and, as
detailed in Appendix B, for this action, Stabc

G� ðH�Þ ¼ NgðH
�Þ the normalizer

of H�.
6 We recall that the product of two sets X and Y is XY = {xi yj, xi 2 X and yj 2

Y} and that X�1 = {x�1
i , xi 2 X}.



which means that all variants have the same intersection group

H�. There is a special case that implies H� /G�: when there

are only two left cosets in the decomposition (20), i.e. when

there are only two variants; see Janovec et al. (2003, p. 384)

and Guymont (1981).

The two-dimensional example proposed in Fig. 1 is very

illustrative. The point group of the parent crystal is G� =

fE; I;m�
x ;m�

y ;m�
xy;m

�
xy; r

�
þ�=2; r

�
��=2g, where, for instance, m�

x is

the matrix of the mirror symmetry through the x axis and r
�
þ�=2

the matrix of the plane rotation of angle þ�=2. All matrices of

G� are expressed in the same basis B�
1. The point group of the

daughter phase is G� = fE;m�
1 ;m�

2 ;m�
3 ; r�þ�=3; r���=3g. For

nearly all the orientation relationships (Fig. 1a), H� is reduced

to {E} and the number of variants is N� = |G�| = 8. In these

cases, H� is trivially normal in G�; thus, each variant is equal to

a singleton of G�, for example �1 = {E}, �2 = fm�
x g, �3 = fr

�
þ�=2g

etc. We note the trivial isomorphism p(x) = {x}; the set of

variants V� is isomorphic to G� (V�
ffip G�) and, in conse-

quence, has a group structure.

However, there are two special cases that differ from this

‘quasigeneral’ case. In Fig. 1(b), H� increases to fE;m�
x g

because m�
x of the crystal � coincides with m�

1 of the crystal �1.

In Fig. 1(c), H� increases to fE;m�
xyg because m�

xy coincides

with m�
1 . In these two cases, the number of variants is reduced

to N� = 4. Each variant is described by a couple of symmetry

operations:

�1 ¼ fE;m�
x g

�2 ¼ r
�
þ�=2�1 ¼ m�

xy�1 ¼ fm
�
xy; r

�
þ�=2g

�3 ¼ I�1 ¼ m�
y�1 ¼ fI;m�

y g

�4 ¼ r
�
��=2�1 ¼ m

�
xy�1 ¼ fr

�
��=2;m

�
xyg

ð29Þ

and H�=�1 = H�=�3 = fE;m�
x g, H�=�2 = H�=�4 = fE;m�

y g. The very

interesting fact is that V� is not a group any more because now

H� is not a normal subgroup of G�. For example, the reader

can check in the case of Fig. 1(b) that fE;m�
x g and m�

xy do not

commute.7

Remark 2. The orientational variants �i ¼ g�i H� are alge-

braically similar to the domain states Si = giF1 introduced in

Janovec (1972) for the Landau transitions. Therefore, many of

the results found by Janovec are also valid for reconstructive

transitions if one takes the precaution to substitute G� by H�

in some parts of his equations. For example, if we call nF the

number of distinct intersection groups (i.e. the number of

distinct conjugate subgroups) and dF the number of variants

with the same intersection group: since H� � NGðH
�Þ � G�

(see Appendix B), it follows that nF = jG�
j=jNGðH

�Þj and dF =

jNGðH
�Þj=jH�j and then that N� = nFdF.

Remark 3. The equality (23) has already been proved by

Humbert et al. (1992) in the specific case of Burgers transi-

tions. Moreover, the demonstration is based on the decom-

position of the rotational group of G� into generator elements,

but restrict G� to the subgroup R� = fg�n 2 G�= detðg�nÞ ¼ þ1g

is in general incomplete. Indeed, a parent phase that has no

rotational symmetries can generate variants; for example, G� =

{E, m} can generate two variants.

Remark 4. We have shown that V� can be considered as a

group if and only if H� /G�. Another special condition has

been described by Van Tendeloo & Amelinckx (1974): when

9 K�
� G� such that G� = H�K�, H�

\ K� = {E} and |H�||K�| =

|G�|. In this particular case, it is said that it is always possible to

find in each left coset �i one symmetry operation g
�
i (a coset

representative) such that the set of these representatives

fg
�
i ; i 2 ½1;N��g has a group structure. This set is called the

variant generating group VGG. However, this group is not

representative of the complete and complex structure of V�.

Indeed, the two examples in Figs. 1(b) and (c) have the same

VGG = fE; r
�
þ�=4; r

�
��=4; Ig, whereas these two cases are

distinct; this means that the information about the OR of the

variants with their parent crystal is lost if only the VGG is

considered.

5.2. Duality between the direct and inverse transitions

This part is only relevant for structural phase transitions. In

the previous section, we have introduced for the �! � phase

transition the intersection group (18): H� = G�
\ T>G�T�1

>

with T> = ½B�
1

" B
�1
1 � . Let us now consider the inverse transi-

tion �! � that can be obtained for example by increasing the

temperature. The intersection group for this transition is H� =

G�
\ T<G�T�1

< �G� with T< = ½B�
1 " B

�1
1 � . One can choose � =

�1 and �1 = �; it follows that

T< ¼ T�1
> ð30Þ

and, therefore,

H�
¼ T<H�T�1

< ¼ T<H�T>: ð31Þ

Thus, the two groups H� and H� are linked by the

isomorphism  introduced in equation (17): H�
ffi H�. Both

groups may be understood as the largest subgroups of G� and

G� linked by the isomorphism  . One may also notice that

T<H� ¼ H�T<

H�T> ¼ T>H�:
ð32Þ

Thus, (H�, H�) appears as the solutions of the equation with

unknown ðg�; g�Þ 2 (G�, G�): g�T> = T>g�, i.e. as the elements

of G�T> \ T>G�, i.e. as the intersection of the trivial external

G� orbit with the trivial internal G� orbit on the set G�T>G�

(see xx3.3 and 4.2).
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follows that mxymx ¼ rþ�=4 and mxmxy ¼ r��=4.



Since H�
ffi H�, jH�j ¼ jH�j and, since N� ¼ jG�

j=jH�j

and N� ¼ jG�
j=jH�j, we deduce a simple equation that links

the numbers of variants of the direct and inverse transitions:

N�jG�
j ¼ N�jG�

j: ð33Þ

To illustrate this equation, we consider the two-dimensional

case of Fig. 1: since |G�| = 8 and |G�| = 6, the number of

variants of the inverse transition is N� = 6 in the case of Fig.

1(a) (because N� = 8), and N� = 3 in the cases Figs. 1(b) and (c)

(because N� = 4).

From equation (33), one may also notice that, if |G�| = |G�|,

then |N�| = |N�|. This means that the number of variants

generated by a transition is equal to the number of variants

generated by the inverse transition, whatever the orientation

relationship. This is the case for the martensitic transition in

steels � ! � (see x9.2).

The �! � Landau transition corresponds to H� =  (G�),

which implies that |H�| = |G�|. Equation (23) applied to the

inverse �! � transition leads to N� = |G�|/|H�| = |G�|/|H�| = 1.

This means that all the crystals �i (inherited from the same

parent crystal �1) generate only one variant of phase � by the

inverse transition (which is the initial parent crystal �1). Thus,

Landau transitions appear as reversible ones. As proved by

(33), this is not the case for reconstructive transitions.

6. Definition of the operators

6.1. Transformations from one variant to another

Equation (19), T�!�i = g
�
i H�T>, can also be written with the

help of equations (32):

T�!�i ¼ g
�
i T>H�: ð34Þ

This set of matrices corresponds to the transformations from a

basis B
�
1 to bases B

�i

k such that: g
�
i = ½B

�
1

" B
�
i � 2 G�, T> =

½B�
i

" B
�i

1 � and ½B
�i

1
" B

�i

k � = h
�i

k 2 H�. Hence, the set of trans-

formation matrices from a variant �i to a variant �j, denoted

T�i!�j , is given by the matrices of the form [B
�i

k
" B

�j

l ] =

[B�
1

" B
�i

k ]�1[B�
1

" B
�j

l ], with [B�
1

" B
�i

k ]2T�!�i and [B�
1

" B
�j

l ]2

T�!�j . Therefore,

T�i!�j ¼ ðT�!�i Þ�1T�!�j ¼ T�1
> H�g�ijH

�T>: ð35Þ

In the following we note

�ij ¼ H�g
�
ijH

�
¼ ��1

i �j: ð36Þ

Since �ij =  ðT�i!�jÞ with  the isomorphism defined in

equation (17), there is a one-to-one correspondence between

the set T�i!�j and the set H�g�ijH
�. Moreover, a trivial property

of �ij is that ��1
ij = �ji, which means that the set of transfor-

mation matrices from �j to �i is the inverse of the set of

transformation matrices from �i to �j.

6.2. The set of operators

It can be easily checked from equation (36) that all the sets

�ij with (i, j) 2 [1, N�]2 are either disjoint or equal. Each

distinct �ij is called an operator and denoted O�
n (the term

‘operator’ will be justified later). Each operator is a class of

equality on the set of the sets of transformation matrices {�ij}.

In other words, �ij and �kl are elements of the same class O�
n if

and only if �ij = �kl (= O�
n). An operator can be geometrically

imagined as a color attributed to the arrows (transformations)

that link the variants. The index n = 0 is applied for all �ii with

i 2 [1, N�]. One may verify that:

O�
0 ¼ H�: ð37Þ

Each operator that transforms �i into �j is equal to

O�
n ¼ �ij ¼ H�g�nH�; with g�n ¼ g

�
ij : ð38Þ

This shows that each operator takes the algebraic form of a

double coset H�g�nH�. In consequence, the set of operators,

which will be denoted O�, can be deduced from the canonical

decomposition of the group G� into double cosets:

G�
¼ H�g�1 H� [H�g�2 H� [ . . . [H�g�

NO� H�: ð39Þ

Each double coset (operator) can be treated as a unique

mathematical entity. The set of operators is the double

quotient set, algebraically denoted H�\G�/H�:

O�
¼ H�\G�=H�

¼ fH�g
�
1 H�;H�g

�
2 H�; . . . ;H�g

�

NO� H�
g:

ð40Þ

NO�

is the number of operators, it is equal to the order of this

set:

NO�

¼ jH�\G�=H�
j: ð41Þ

Remark 5. The double coset decomposition was introduced for

Landau transitions by Janovec (1972) with details in Janovec

& Dvorakova (1989).8 To keep Janovec’s vocabulary for

domain pairs, we say that an operator is ambivalent if T�i!�j =

T�j!�i , �ij = �ji , ��1
ij = �ij , H�g�nH� = H�(g�n)�1H�

,

O�
n = ðO�

nÞ
�1. For ambivalent operators, the set of transfor-

mations from the variant �i to the variant �j is equal to the set

of transformations between the variant �i and the variant �j.

One can then write T�i$�j instead of T�i!�j. If the operator is

not ambivalent, i.e. if T�i!�j 6¼ T�j!�i , O�
n 6¼ ðO

�
nÞ
�1, the

operator is called polar. However, an ambivalent equivalence

class can be created from polar operators by writing T�i$�j =

T�i!�j [ T�j!�i =  �1ðhO�
niÞ with hO�

ni = O�
n [ ðO

�
nÞ
�1.

To illustrate our reasoning, let us consider the example of

Fig. 1(a). One may verify with equation (38) that the set of

variants V� and the set of transformations that link the

variants, O�, are isomorphic by the trivial application p(x) =

{x}: O�
ffip V�. Thus the number of operators is equal to the

number of variants and O� has the same group structure as V�.

In the case of Fig. 1(b), it can be checked algebraically that

O�
0 = fE;m�

x g, O�
1 = �12 = �21 = �23 = �32 = �34 = �43 = �41 = �14 =

fm�
xy; r

�
þ�=2; r

�
��=2;m

�
x�yyg and O�

2 = �13 = �31 = �24 = �42 = fI;m�
y g.
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are called ‘crystallographically equivalent’ if 9 g� 2 G� such that Sj ¼ g�Si and
Sl ¼ g�Sk. There is a one-to-one correspondence between the class of pair
domains and the double coset.



We may see that all the operators are ambivalent. We also

point out that neither V� nor O� has a group structure.

Although the decomposition (39) is canonical (see footnote

8), Janovec & Dvorakova (1989) did not give a general

formula to calculate the number of double cosets. However,

we will show now that such a generalization is possible. The

reader is invited to look over Appendix B before reading the

next section.

6.3. Numbering the operators

We consider the operator O�
n = H�g�nH�. In this set, each

right coset H�g�n can be written as a set of matrices {g
�
i , g

�
i 2

H�g�n}. Hence, any operator (double coset) can be written as a

set of left cosets:

O�
n ¼ fg

�
i H�; g

�
i 2 H�g�ng ¼ f�i with g

�
i 2 H�g�ng: ð42Þ

Thus, according to the vocabulary of Janovec & Dvorakova

(1989), if each operator comprises one coset, it is called simple

or, if it comprises many cosets, it is called multiple. The

isotropic operator O�
0 = {�1} is always a simple operator. In the

example of Fig. 1(b), the three operators can be written O�
0 =

{�1}, O�
1 = {�2, �4} and O�

2 = {�3}; only O�
1 is multiple.

If H� is normal in G�, H�g�i = g�i H� (any right coset is equal

to a left coset); consequently, any operator O�
n = {g�i H�} = {�i}.

The trivial isomorphism p(x) = {x} links each double coset to a

left coset and, in consequence, H�\G�/H�
ffip G�/ H�:

H� / G�
) O�

ffip V� ffip G�: ð43Þ

Then, if H� / G�, one can associate one variant to each

operator (the operator is simple): the set of variants and the

set of operators have the same group structure G�/H�. A

consequence is NO�

= N�. This is the case in Fig. 1(a).

More generally (whatever H� is in G�), from equation (39)

one can always notice that H� acts at the left of the set of

variants V�. Then, each operator can be identified to a left H�

orbit on the set V�. Since H� acts closely on V�, these orbits

can be called internal orbits. To sum up, an operator is

expressed by a double coset and represented by an internal H�

orbit on V�. A direct consequence is that the number of

operators NO�

is the number of H� orbits on V�; this number

appears in the class equation (Appendix B):

jV�j ¼
XNO��1

n¼0

jO�
nj ¼

XNO�

n¼1

jH�j

jStabH� ð�iÞj
; with �i 2 O�

n:

Since jV�
j = N� and O�

0 = {�1}, it follows that

N� ¼ 1þ
XNO��1

n¼1

NO�
n

�i
; with NO�

n
�i
¼

jH�j

jStabH� ð�iÞj
2 N; ð44Þ

where NO�
n

�i
is the number of variants �i contained in each orbit

O�
n and StabH� ð�iÞ = {h� 2H�, h��i = �i} is the stabilizer of �i in

H�.

Since StabH� ð�iÞ = H�
\ g�i H�

ðg�i Þ
�1 with g�i 2 �i (see the

end of Appendix B) and since g�i H�(g�i Þ
�1 = H�=�i [equation

(26)], it follows that

StabH� ð�iÞ ¼ H�
\H�=�i : ð45Þ

From this formula, StabH� ð�iÞ appears as the set of elements

that leaves invariant both �1 and �i, i.e. that leaves invariant

the ordered pair (�1, �i).

Equation (44) proves that the number of operators is always

lower than the number of variants, and that the number of

variants is the addition of the unity to some terms that divide

|H�|. To illustrate this property, we consider the case of Fig.

1(b): there are N� = 4 variants that are partitioned into three

operators {�1}, {�2, �4} and {�3} whose number of elements

divides |H�| = 2 such that finally 4 = 1 + 2 + 1. Since there are

three terms in this decomposition, NO�

= 3. The reader can also

check in this example that equation (45) gives the stabilizer of

the three operators {�1}, {�2, �4} and {�3}.

The number of operators NO�

given by equation (44) can

be also directly obtained from the Burnside formula (see

Appendix B):

NO�

¼
1

jH�j

P
h�2H�

jFixV� ðh�Þj; ð46Þ

where FixV� ðh�Þ = {�i 2 V�, h��i = �i} is the fixer of h� in V�.

In equation (42), {�i} = {g
�
i H� with g

�
i 2 H�g�n} is also equal

to {H��i, g
�
i 2 H�g�n} = {��1

1 �i with g
�
i 2 H�g�n}; consequently,

O�
n ¼ f�ig ¼ f�1ig: ð47Þ

This means that the variants �i that constitute the operator O�
n

in equation (42) are all the ‘images’ of the variant �1 by the

operator O�
n. Equation (47) can also be written

�1O�
n ¼ f�ig; ð48Þ

which should be read from left to right: ‘first take �1 , then

apply O�
n and you obtain different variants �i’. With this

equation, O�
n appears as an operator. Moreover, O�

n acts as a

multivalued operation that transforms �1 into many �i. The

pairs (�i, �j) verifying �ij = O�
n are the pairs (source, target) for

the operator O�
n (see x7.1).

Remark 6. In this work, the information required to build the

different variants inherited from the same parent crystal is

obtained from the set of equivalent transformations defined in

(19): T�!�i = g
�
i T>H�. However, the whole set of transfor-

mations from the basis B
�
1 to all the bases B�i

n of any crystal �i

(not necessarily considered as a variant) is given by T
�!�i
t =

g�i T>G�, with the index t for total. The difference between the

two sets T
�!�i
t and T�!�i forms excessive information that is

not useful to determine the algebraic structure constituted by

the variants. The total set of transformation matrices from a

crystal �i to a crystal �j is T
�i!�j

t = G�T�1
> g

�
ijT>G�, which

includes the set T�i!�j presented in equation (35). This is

actually the set used in all the metallurgical studies devoted to

the reconstruction of parent grains from EBSD maps, for

example on martensitic steels (Gourgues et al., 2000) or on

titanium alloys (Gey & Humbert, 2003). Indeed, if G� is not

reduced to {E} or {E, I}, each set T
�i!�j

t is a set of isometry

matrices that contains at least one matrix with positive
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determinant, i.e. a rotational matrix. For each rotational

matrix of the set T
�i!�j

t , the rotation angle and axis (�, U) can

be easily deduced from its eigenvalues and eigenvectors:

cos(�) is known from the trace of the matrix and the sign of �
can be attributed if the reference coordinate system B

�
1 is

oriented as a direct basis. Then, at each set T
�i!�j

t , one may

associate a representative pair (�min, U) with the minimum

angle and the corresponding rotation axis in order to create a

class of transformations: two transformations T
�i!�j

t and

T
�k!�l
t are declared ‘equal’ or ‘distinct’ by comparing their

corresponding pairs (�min, U)ij and (�min, U)kl. Actually, in the

previous metallurgical studies, only j�j has been taken into

consideration [probably because only cos(�) was considered in

the rotational matrices]. The operators presented in these

studies (they are called ‘special misorientations’) are therefore

less precise since they are all forced to be ambivalent: they

correspond to the operators of type hO�
ni. We have determined

by computation of the operators hO�
ni and the corresponding

pairs (j�minj, U) from the operators O�
n defined by equation

(47) for any phase transition; the results for Burgers transi-

tions are presented in x9.1

7. Groupoid of orientational variants

We have seen that in general V�, the set of variants, does not

have a group structure. What could be the algebraic structure

of such a set? Moreover, what is the algebraic structure of O�,

the set of operators that link these variants? Since all the

terms have been mathematically defined in the previous

sections, it will be quite direct to show that the combination of

two sets V� and O� forms a groupoid structure. These

considerations will allow us to show that the composition of

operators is a multivalued operation and how it is possible to

establish a composition table for the operators. This section

must be considered as a theoretical approach; an example of

the application of the groupoids to materials-science problems

will be given in x10.1 with more details in Cayron et al. (2006).

7.1. Introduction to groupoids

A group defines a structure of actions without explicitly

presenting the objects on which these actions are applied.

Indeed, the actions of the group G applied to the identity

element e implicitly define the objects of the set G by ge = g; in

other terms, in a group, actions and objects are two isomorphic

entities. A groupoid enlarges the notion of group by explicitly

introducing, in addition to the actions, the objects on which the

actions are applied. By this approach, many identities may

exist (they correspond to the actions that leave an object

invariant). We present here a definition adapted from the

Weinstein (1996) paper about the transformation groupoids:

let x be a solid and C a finite subset of the group of isometries

O(3), and let us call X the set of similar solids formed by the

actions of C on x. The transformation groupoid formed by X

and C is the set:

GðX;CÞ ¼ fg ¼ ðx; �; yÞ with ðx; yÞ 2 X2; � 2 C and x� ¼ yg

ð49Þ

with the partially defined operations: (x, �, y)(y, �, z) =

(x, ��, z). One may imagine � of C as an arrow (without

reference to any object of X) and g of G(X, C) as the arrow �
from the object x to the object y. Contrary to the convention

used by Weinstein, the composition of the binary operations

�� must be understood as ‘first apply � and then apply �’. This

convention is the direct consequence of the definition of

transformation matrices presented in x3.1 and of their

composition rule (6).

We denote by s and t two maps (called source and target)

from G(X, C) onto X such that:

s : ðx; �; yÞ ! x and t : ðx; �; yÞ ! y

The operations on G(X, C) have the following properties.

1. The product is defined only for certain pairs of elements

of G: gh is defined only when t(g) = s(h).

2. It is associative: if either the product (gh)k or g(hk) is

defined, then so is the other and they are equal.

3. For each g 2 G, there are left and right identity elements

�g and �g such that �gg = g = g�g.

4. Each g of G has an inverse g�1 for which gg�1 = �g and

g�1g = �g.

More generally, a groupoid with a base X is a set G(X, C)

with mappings s and t from G(X, C) onto X and a partially

defined binary operation (g, h) ) gh satisfying the four

previous conditions. One may consider each g of G as the

arrow s(g)) t(g). This direction is more natural than the one

resulting from the Weinstein convention.9 Some concepts are

also important in groupoid theory:

(a) The isotropy group of x 2 X consists of those g in

G(X, C) with s(g) = x = t(g).

(b) An orbit of the groupoid G(X, C) containing x is Ox =

{g = (x, �, y), x� = y and � 2 C}. The set of orbits over X defines

an equivalence class with x �G y if and only if there is a

groupoid element g such that s(g) = x and t(g) = y; i.e. x� = y.

(c) We need to introduce a new notion, the ‘operator’, to

explain the results obtained in the present study. Let us

consider (x1, y1) and (x2, y2) 2 X2 such that x1� = y1 and x2� =

y2. We introduce the equivalence relation on the pairs by:

(x1, y1)� (x2, y2), � = �. It is the relation of pairs of elements

(x, y) similarly placed in the groupoid. The equivalence classes

partition the groupoid G according to the sets of elements g =

(x, �, y) such that x and y are linked by the same binary

operation. The binary operation associated with each set of

this partition is what we call an operator.

In order to illustrate the definition of groupoid, let us

consider a simple one-dimensional example with the set of the

relative integers associated with the operation + (addition),

but omitting, for instance, the numbers 5 and 11:
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9 Weinstein’s convention leads to the opposite: t(g) ! s(g) which appears
confusing. This linguistic ambiguity comes from the fact that Weinstein has
chosen the convention of the functional composition f � g (‘first apply g and
then f ’). In this paper, we have preferred the notation fg (‘first apply f and then
g’) the composition of the linear functions f and g associated with
transformation matrices F and G (footnote 2).



S ¼ Z� f5; 11g. Of course, (Z, +) is a group, but not (S, +).

However, one can associate with S the structure G(S, +),

defined by the set of elements g = (z1, z2� z1, z2) with (z1, z2) 2

S2 and the composition rule (z1, z2� z1, z2)(z2, z3� z2, z3) =

(z1, z3� z1, z3). One may check that G(S, +) is a groupoid. This

kind of groupoid is called a pair or banal groupoid. The

identities are g0 = (z1, 0, z1) and, if g = (z1, z2� z1, z2), g�1 =

(z2, z1� z2, z1). For any fixed number Z, the equivalence class

of elements (z1, z2� z1, z2) linked by the same operation

z2� z1 = +Z forms the operator +Z. This must be understood

by: z1 + Z = z2 (‘first consider z1, then apply +Z, and you obtain

z2’).

7.2. Definition and properties of the groupoid of orienta-
tional variants

In the previous section, we have defined the set of variants

V� = {�i} = G�/H� for the �! � transition. The transforma-

tion from the variant �i to the variant �j was defined by T�i!�j

= T�1
> �ijT>, with �ij = ��1

i �j being an element of the set O� =

H�\G�/H�. Now, it may be checked that V�, the set of variants,

associated with O�, the set of operators, forms a groupoid that

we call a groupoid of orientational variants:

G�!�
¼ GðV�;O�

Þ

¼ fð�i; �ij; �jÞ; �i 2 V�; �ij 2 O�; �j 2 V�; �i�ij ¼ �jg

ð50Þ

with the partially binary operation (�i, �ij, �j)(�j, �jk, �k) =

(�i, �ij �jk, �k) = (�i, �ik, �k), as illustrated in Fig. 2. In all the

following, we will directly associate �ij with (�i, �ij, �j). The

variants �i and �j appear as the source and target of �ij: �i =

s(�ij) and �j = t(�ij). One may imagine �ij as an arrow pointing

from �i to �j.

The groupoid G�!� is geometrically rather simple, i.e. its

low-level properties can be visualized or verified from the

algebraic definition (50).

1. The binary operation is associative: the products

(�ij�jk)�kl and �ij(�jk�kl) are equal (to �il).

2. For each �ij in G�!�, there are left and right identity

elements that are both equal to �ii = �jj = H� = O�
0 , which also

constitutes the isotropy group of each variant �i.

3. Each element �ij in G�!� has an inverse equal to ��1
ij =

�ji.

In the groupoid G�!�, all the binary operations between the

variants are defined; consequently, there is only one trivial

orbit on the base V�. However, there are many operators in

G�!� and their set is O�. For each operator O�
n of O�, one can

associate a set of pairs {(�i, �j), (�k, �l), . . . } of variants

similarly oriented in the parent crystal, i.e. such that �ij = �kl =

. . . = O�
n .

This definition of groupoid is very general. Any polycrystal

(a set of randomly oriented crystals) can actually be imagined

as a groupoid. If there are N crystals in this polycrystal, there

will be, in general, 2C(N, 2) operators that link these crystals.

What makes the groupoid of orientational variants interesting

relies on the fact that the variants are not randomly oriented

and, consequently, the number of operators is far lower than

2C(N, 2). Moreover, these operators can be composed in a

special way and this composition may be seen as the groupoid

signature, as shown in the following.

7.3. Composition of operators

We can perform two interesting compositions between the

operators of the groupoid of orientational variants.

The first one is: ðO�
m;O�

nÞ 2 (O�)2
!O�

mO�
n = fO�

qg 2 P(O�),

where P(O�) is the set of partitions of the set O�. This

composition can be easily computed from the associativity

condition of the groupoid. Indeed, we write O�
m as a set of �ij

and O�
n as a set of �kl. Then, we find in each set the elements

that verify t(�ij) = s(�kl), i.e. j = k, and write �il = �ij�kl. Since

each �il belongs to a class O�
q, the product of operators O�

mO�
n

takes the form of a set fO�
qg.

The second one is: ðO�
m;O�

nÞ 2 (O�)2
! ðO�

mÞ
�1O�

n = fO�
qg 2

P(O�). This composition can also be easily computed by taking

�1 as a reference. Indeed, we write O�
m as a set of �i (= �1i) and

O�
n as a set of �j (= �1j). Then, we directly write �ij = ��1

1i �1j. In

general, the composition of two operators is neither reduced

to ; nor to a singleton. It means that the composition is not a

classical application but a multivalued product. The multi-

valued composition of operators is geometrically visible. In

the example of Fig. 1(b), since O�
0 = fE;m�

x g, O�
1 = �12 = �21 =

�23 = �32 = �34 = �43 = �41 = �14 and O�
2 = �13 = �31 = �24 = �42, it

may be checked that ðO�
1 Þ
�1O�

2 = fO�
1 g, ðO

�
1 Þ
�1O�

1 = fO�
0 ;O�

2 g

and ðO�
2 Þ
�1O�

2 = fO�
0 g. In this simple case, the multivalued

result obtained with ðO�
1 Þ
�1O�

1 comes from the ambivalence of

O�
1 ; but this is not always the reason (as will be shown for a

more complex case given in x9.1). The composition

ðO�
m;O�

nÞ ! ðO
�
mÞ
�1O�

n has the advantage of allowing the

representation of the entire structure of the groupoid (variants

and operators) in the same table that we will call table of

composition of the groupoid (see Fig. 6 for example, with

details in x9.1). This table plays the same role as a group table;

it is the signature of the groupoid of orientational variants and

is characteristic of the crystallographic aspects of the phase

transition.

7.4. Comparison to space groupoids

Groupoids were first introduced in crystallography for

order–disorder (OD) structures by Dornberger-Schiff &

Grell-Niemann (1961); after that the same authors noticed the

partial character of some symmetry operations in twin struc-

tures (Dornberger-Schiff, 1959). OD structures are crystal-

lographic structures constituted by two-dimensional periodic

layers linked by partial (or local) operations (PO). The name
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Composition of the operators in the groupoid of orientational variants
G�!�.



‘order–disorder’ is probably too broad since only the order in

the stacking of the layers is not complete (the positions of the

atoms inside each layer are entirely determined). The OD

theory is actually a crystallographic (and algebraic) descrip-

tion of polytypism, but order–disorder transitions are far more

universal and complex than order–disorder in polytypes.

Dornberger-Schiff points out that the set of POs does not form

a group but a groupoid since, for example, the operation that

transforms the layer Lp in Lq and the operation that trans-

forms the layer Lr in Ls cannot be combined, unless q = r. Such

considerations explain some diffraction enhancements of

symmetry not due to Friedel’s law10 in polytypes (Sadanaga,

1978; Sadanaga & Ohsumi, 1979) and in quasicrystals

(Yamamoto & Ishihara, 1988). Those works introduce the

concept of space groupoid in order to define the local

symmetry operations on a space group, assuming that this one

is constituted by a repeated substructure. Thus, the space

groupoid and the groupoid of orientational variants could

appear very different since the related problems are different.

However, both can be considered as the algebraic description

of a composite structure built from specially placed subunits

and therefore are similar from a geometrical point of view.

Their algebraic definitions are actually very close.11

8. Calculation of the possible parent crystals

8.1. Motivations for the calculation

We denote by 	c the transition temperature for Landau

transitions, and by 	s and 	f the start and finish temperatures

for reconstructive transitions. We call ‘half a cycle’ the

operation that consists in cooling the material from a

temperature 	1 > 	s (or 	c) to a temperature 	2 < 	f (or 	c) or in

heating it from 	2 to 	1. By ‘transition cycle’ we mean the

succession of the two operations: cooling from 	1 to 	2 and

heating from 	2 to 	1. Now, let us consider a transition cycle:

we start at 	1 with a material constituted only by one crystal �1;

this material is then cooled to 	2 and completely transformed

by the transition �1! {�i}. The material is now constituted by

N� orientational crystals {�i}. It is then reheated at 	1 such that

each crystal �i becomes a parent crystal for the transformation

�i! {�k} (end of a cycle). We call these new crystals of phase

�, which are variants of variants, � crystals of second

generation. Their number is denoted as N�
2. Since many of

them are identical (in the same orientation), one may verify

that

N
�
2 � N�N�: ð51Þ

For Landau transitions, since N� = 1, all the variants �i

recreate the same orientational crystal, which is �1; and, in

consequence, during thermal cycles, N
�
2 = N

�
3 = . . . = N�

1 = N� =

1. For reconstructive transitions, to our knowledge, there is no

general formula that gives N�
2.

This theoretical ‘thermal cycling problem’ is close to the one

encountered in parent grain reconstruction from EBSD data.

Only the orientations of a limited number of daughter grains is

known in the data but one would like to reconstruct the parent

grains and know their location and orientation. This is useful

to determine if cracks occur and propagate at parent grain

boundaries (Gourgues et al., 2000), or to better understand

why and how variant selection occurs during successive

heating and cooling treatments (Gey & Humbert, 2003;

Standford & Bate, 2005). In order to determine the possible

parent crystals of a finite set of variants {�i}, one may imagine

the inverse transition such that each �i becomes a parent

crystal of a set of crystals {�k}. The number of possible parent

crystals of the crystals �i is then given by the set of all the

daughter crystals �k that have �i as parent crystals. This

problem has been treated by Humbert et al. (1995) for Burgers

transitions. This section generalizes this approach with the

help of the algebraic notions presented in the previous

sections. Both problems (calculation of N
�
2 and determination

of parent grains) require the resolution of the same inter-

mediate problem: assuming that the orientations of two

variants are known, how many distinct crystals (i.e. with

distinct orientations) can be their parent?

8.2. Parent crystals common to two daughter crystals

Let us consider two � variants inherited from a crystal �1,

for example �i = g
�1
i H� and �j = g

�1
j H�

2 (V�)2. These two
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Figure 3
Intersection between the external G� orbit around �i and the one around
�j: it allows one to know if two variants �i and �j inherited from a parent
crystal �1 can also be inherited from another parent crystal �k.

10 This approach generalizes Friedel’s law, but still respects Curie’s principle
(Curie, 1894): the effects (diffraction) are at least as symmetric as the causes
(the crystallographic structure).
11 In his approach, Sadanaga uses the groupoid of the form
M ¼ fhiHh�1

j ; ðhi; hjÞ 2 Tg, where H is the space group of the substructure
(what they called the kernel of the groupoid, i.e. what we call the isotropy
group of the substructure) and T is the hull of the groupoid (the set of actions
of the groupoid, i.e. the operators). In Sadanaga’s approach, the composite
structure must be built from only one substructure, as is the case in the
groupoid of orientational variants. We think that the difference between his
groupoid M and the groupoid of orientational variants fHh�1

i hjH; ðhi; hjÞ 2 Gg
with G the point group of the parent crystal and H a subgroup of G is due to
the difference in the composition rules.



variants are determined from their respective orientations

with the crystal �1 given by equation (34):

T�1!�i ¼ g
�1
i H�T> ¼ �iT>

T�1!�j ¼ g
�1
j H�T> ¼ �jT>:

ð52Þ

We want to know if these two variants can also be inherited

from another parent crystal, which we will call, for example,

�k. It is essential to notice that the index k of this crystal is

given with reference to the other crystals �i or �j. Hence, if �k

is inherited from the parent crystal �i by the inverse transition,

it must be denoted �ki
and, if it is inherited from the parent

crystal �j, it must be denoted �kj
(see Fig. 3). Of course, �ki

and

�kj
are both elements of the same set V� but in general ki 6¼ kj.

What is the algebraic relation between �ki
and �kj

?

By inverting each member of the indexing convention

chosen (12), we obtain

½B
�i

1 . B
�1
i � ¼ ½B

�1
1 . B

�1
1 � ¼ T<: ð53Þ

Then, by applying again the indexing rule (12), we can

generalize:

½B
�i

k . B
�k
i � ¼ T<: ð54Þ

It follows that ½B
�i

1
" B

�k
i � = ½B

�i

1
" B

�i

k �½B
�i

k
" B

�k
i � = g

�i

k T<. It

must be noticed that g
�i

k is an element of G�. By indicating its

index in this list as ki, we may write g
�i

k = g�ki
. The crystal �k is

then determined from two transformation matrices:

½B
�i

1 . B
�k
i � ¼ g�ki

T<

and ð55Þ

½B
�j

1 . B
�k
j � ¼ g�kj

T<:

These two transformation matrices are respectively elements

of

T�i!�k ¼ g�ki
H�T< ¼ �ki

T<

and ð56Þ

T�j!�k ¼ g�kj
H�T< ¼ �kj

T<;

with �ki
and �kj

elements of V�. One may notice that the

matrices of T�i!�k and T�j!�k are elements of the external

orbit G�T< around �i and �j, respectively (see Fig. 3). From

equations (56), �k can be calculated in the same reference

coordinate system B
�1
1 in two ways:

½B
�1
1 . B

�k
i � ¼ ½B

�1
1 . B

�i

1 �½B
�i

1 . B
�k
i � ¼ g

�
i T>g�ki

T<

½B
�1
1 . B

�k
j � ¼ ½B

�1
1 . B

�i

1 �½B
�i

1 . B
�k
j � ¼ g

�
j T>g�kj

T<:
ð57Þ

These two transformation matrices define the same crystal �k

if and only if, from equation (9),

½B
�1
1 . B

�k
i �
�1½B

�1
1 . B

�k
j � 2 G�

()

T>ðg
�
ki
Þ�1T<ðg

�
i Þ
�1g�j T>g�kj

T< 2 G�: ð58Þ
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Figure 4
Variants of second generation �ki

corresponding (a) to Fig. 1(b) and (b) to
Fig. 1(c). They are generated from the variants �i by the inverse transition
� ! �. Here, the number of distinct variants of second generation is
N�

2 ¼ 3.

Figure 5
Representation of the � variants in (a) a developed figure and (b) a three-
dimensional figure. Some operators (see x7.2) are represented in (a): O�

2 ,
O�

3 , O�
5 are in orange, red and blue, respectively. In (b), the {100}, {110}

and {111} faces of the cubic � parent crystal are in white, and the 12
hexagonal � variants are in green (only their {001} planes are
represented).



By using equation (32), one may verify that equation (58) does

not depend on the choice of representative g�ki
and g�kj

in their

respective cosets g�ki
H� and g�kj

H� (both elements of V�).

Consequently, only one representative can be chosen in each

coset of V� when using equation (58). This simplification is not

possible for the choice of g
�
i and g

�
j , however, since these two

matrices are elements of �i and �j, respectively, the matrix

ðg
�
i Þ
�1g

�
j = g

�
ij 2O�

n , where O�
n is the operator that links �i to �j.

Testing all the g�ij 2 O�
n generates all the possible solutions of

equation (58). Therefore, we conclude that two crystals �i and

�j inherited from the same parent crystal �1 and linked by O�
n

can also be inherited from another crystal �k if and only if

9 ð�ki
; �kj
Þ 2 ðV�Þ2; T>�

�1
ki

T<g�ijT>�kj
T< 2 G�

ð59Þ

with g�ij 2 O�
n . One may check, with the help of equation (32),

that �1 = H� always obeys equation (59). We recall that ki and

kj represent the indices of the crystal �k with reference to the

crystals �i and �j, respectively. One can also verify that the

operator O�
m that links �1 to �k is given by O�

m = �1ki
= �1kj

=

H��ki
= H��kj

.

8.3. Number of variants of second generation

The variants of second generation corresponding to the

cases of Figs. 1(b) and (c) are presented in Figs. 4(a) and (b),

respectively; their number can be geometrically determined; it

is N
�
2 = 3. In the present study, we do not propose a general

algebraic formula that gives this number. We propose,

however, a method that allows its calculation and that can be

easily computed. We first consider the crystal �1 (inherited

from �1) and all its variants f�k1
g. Then, we consider the

second crystal �2 and all its variants f�k2
g. By applying equa-

tion (59), we deduce all the variants of f�k2
g identical

(internally equivalent) to one of the variants of f�k1
g, and then

the variants of f�k2
g that are ‘really new’ (those different from

any f�k1
g. Now, we consider the third variant �3 and all its

variants f�k3
g, and keep in this set only the new crystals (i.e.

different from �k1
and �k2

) etc. This algorithm has been

applied to calculate the number of variants of second

generation for complex cases such as those presented in x9.1.

Of course, the mathematical study of the series of variant

numbers N
�
2, N

�
3 , . . . , N�

n of the nth generation would require a

deeper study.

9. Computation and application to reconstructive
transitions

The two-dimensional cases like those presented in Fig. 1 are in

general geometrically simple. However, three-dimensional

crystallographic cases encountered in materials science (phase

transition, precipitation, twinning) are more complex. There-

fore, we have written a computer program in Python language

(Marteli, 2004), according to the equations presented in the

previous sections, which calculates the set of variants, the set

of operators, the composition table of the groupoid and the

possible parent crystals inherited from two daughter variants.

It takes a few seconds to compute all the variants and

operators with a 1 GHz PC for any crystalline structural

transition. Such speed could not have been obtained without

the theoretical considerations described in this paper. We give

here the details of the results obtained for Burgers transitions;

some results obtained for martensitic transitions in steels are

also briefly reported.

9.1. Burgers transitions

The � ! � Burgers transitions (Burgers, 1934) are transi-

tions from a high-temperature body-centered cubic phase (�)

to a low-temperature hexagonal close-packed phase (�). This

transition occurs for example in Ti or Zr alloys. One of the

possible ORs that links an � crystal to a � parent crystal is

given in Table 1. The intersection group H� is given in Table 2

and the computed variants �i are presented in Fig. 5. We found

that |H�| = 4 and, since |G�| = 48, the number of � variants is

N� = 12. The operators associated with the pairs of variants

(�i, �j) are determined by calculating all the distinct sets of

matrices �ij = ��1
i �j, as presented in Table 3. We find that O�

0 =

{�1}, O�
1 = {�2, �3}, O�

2 = {�4}, O�
3 = {�7, �9}, O�

4 = {�6, �12},

O�
5 = {�5, �10} and O�

6 = {�8, �11}. The number of operators is

NO�

= 7, in agreement with the class equation (44): 12 =

1+2+1+2+2+2+2 = addition of seven terms that each
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Table 2
Intersection groups for a Burgers transition (OR in Table 1).

The symmetry operations are written with the Jones and with the Bradley &
Cracknel representations. See also Bradley & Cracknell (1972) for details.

H�
� G�  H�

� G�

E ! E
I ! I
(�yy �xx z) = 
da ! (x y �zz) = 
h

(y xz) = C2a ! (�xx �yy z) = C2

Table 3
For a Burgers transition, composition table between variants generating
the operators: (�i, �j)! �ij = ��1

i �j = O�
n , where O�

n is the operator that
links the variant �i to the variant �j.

In this table, only the index n of O�
n is reported (�i and �j are in the first line

and first column, respectively).

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12

�1 0 1 1 2 3 4 5 6 5 3 6 4
�2 1 0 2 1 5 6 3 4 4 6 3 5
�3 1 2 0 1 6 5 4 3 3 5 4 6
�4 2 1 1 0 4 3 6 5 6 4 5 3
�5 5 3 6 4 0 1 1 2 3 4 5 6
�6 4 6 3 5 1 0 2 1 5 6 3 4
�7 3 5 4 6 1 2 0 1 6 5 4 3
�8 6 4 5 3 2 1 1 0 4 3 6 5
�9 3 4 5 6 5 3 6 4 0 1 1 2
�10 5 6 3 4 4 6 3 5 1 0 2 1
�11 6 5 4 3 3 5 4 6 1 2 0 1
�12 4 3 6 5 6 4 5 3 2 1 1 0

Note that this table is not symmetric owing to the polarity of some operators. Indeed,
operators 3 and 5 are distinguished: they correspond to a rotation of ��=3 and þ�=3
around the h111i directions of the cubic parent crystal oriented from the inside to the
outside of the parent cube. They are represented in red and blue in Fig. 5, respectively.



divides |H�| = 4. For each operator, the list of source and target

pairs (�i, �j) is directly deduced from Table 3 and presented in

Table 4. We have also calculated the set of transformation

matrices T
�i!�j

t (see Remark 6) and we have reported some

rotations with the minimum angle and with special angles (60,

90, 120 or 180�) in the last column of Table 4. One may notice

that the operators O�
3 and O�

5 are complementary polar

operators and that the other ones are ambivalent. If the

operators are forced to be ambivalent (i.e. O�
3 and O�

5

considered as the same operator), we find that NhO
�i = 6, as

published by Gey & Humbert (2003). The composition of the

operators is presented in Fig. 6. All the parent crystals of two

variants �1 and �i, {�1, . . . , �k} are calculated according to

equation (59) and are given in Table 5. From this table, we

recursively calculate if a set {�1, . . . , �N} of N daughter

variants can have only one parent crystal (�1). We found that

four variants determine unambiguously the parent crystal.

Indeed, in contrast to the results given by Humbert et al.

(1995), in some special cases, even three variants {�1, �6, �12}

can be inherited from two different parent crystals �1 and �6,

where �6 is a twin of �1 through the ð1�111Þ mirror plane. The

situation can be understood by observing on Fig. 5(a) that �1,

�6, �12 have their basic vector a = [100] normal to the plane

ð1�111Þ of �1 and, consequently, are invariant by the rotation of

180� around [100]�1
= [1�111]�1

, which transforms �1 into �6. This

solution has been forgotten by Humbert et al. (1995) probably

because in that study only the rotational symmetries were

taken into consideration. Moreover, from Table 5 and Table 4,

we have determined that the number of variants of second

generation is N�
2 = 40.

9.2. Martensitic transitions in steels

In the � ! � martensitic transitions in steels, the parent

phase is the face-centered cubic austenite (�) and the

daughter phase, at low carbon levels, is the body-centered

cubic martensite (�0). There are two possible orientation

relationships: the Nishiyama–Wasserman (NW) OR (Nish-

iyama, 1934; Wassermann, 1933) and the Kurdjumov–Sachs

(KS) OR (Kurdjumov & Sachs, 1930). Some results on the

groupoid of variants are briefly reported here; more details

will be given by Cayron et al. (2006). Since the parent and

daughter phases have the same point-group order, the number

of variants is independent of the direction of the transition

arrow (heating or cooling). We find that |H�| = |H�| = 4 and

N� = N� = 12 variants for a NW OR, and that |H�| = |H�| = 2

and N� = N� = 24 for a KS OR, which is well known in

metallurgy. The operators are determined by computation, we

find NO�

= 7 with a NW OR and NO�

= 24 with a KS OR. If the
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Table 4
For a Burgers transition, list of the operators O�

n and their corresponding
variants (source and target) verifying O�

n = �ij.

Each operator contains some rotations (see Remark 6); the minimum angle
and some special angles (60, 90, 120 or 180�) are indicated with their axis (in
the source daughter basis).

List of pair of variants (�i, �k), source and
target of the operator O�

n

Rotation angle (�)
and corresponding
axis

O�
0 (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7),

(8, 8), (9, 9), (10, 10), (11, 11), (12, 12)
60� [100]
120� [100]
180� [110]

O�
1 (1, 2), (1, 3), (2, 1), (2, 4), (3, 1), (3, 4), (4, 2),

(4, 3), (5, 6), (5, 7), (6, 5), (6, 8), (7, 5),
(7, 8), (8, 6), (8, 7), (9, 10), (9, 11), (10, 9),
(10, 12), (11, 9), (11, 12), (12, 10), (12, 11)

90� [1�990]
180� [63,36,35]

O�
2 (1, 4), (2, 3), (3, 2), (4, 1), (5, 8), (6, 7), (7, 6),

(8, 5), (9, 12), (10, 11), (11, 10), (12, 9)
10.5� [001]
180� [1�990]

O�
3 (1, 7), (1, 9), (2, 5), (2, 12), (3, 6), (3, 10),

(4, 8), (4, 11), (5, 1), (5, 11), (6, 4), (6, 9),
(7, 2), (7, 10), (8, 3), (8, 12), (9, 3), (9, 5),
(10, 1), (10, 8), (11, 2), (11, ), (12, 4),
(12, 7)

60.8� [1,�99,10]
90� [63,36,35]
120� [�77,70,60]

O�
4 (1, 6), (1, 12), (2, 8), (2, 9), (3, 7), (3, 11),

(4, 5), (4, 10), (5, 4), (5, 10), (6, 1), (6, 12),
(7, 3), (7, 11), (8, 2), (8, 9), (9, 2), (9, 8),
(10, 4), (10, 5), (11, 3), (11, 7), (12, 1),
(12, 6)

60� [100]
180�[8,16,5]

O�
5 (1, 5), (1, 10), (2, 7), (2, 11), (3, 8), (3, 9),

(4, 6), (4, 12), (5, 2), (5, 9), (6, 3), (6, 11),
(7, 1), (7, 12), (8, 4), (8, 10), (9, 1), (9, 6),
(10, 3), (10, 7), (11, 4), (11, 5), (12, 2),
(12, 8)

60.8� [�11 9 10]
90 � [63,36,35]
120� [7,70,60]

O�
6 (1, 8), (1, 11), (2, 6), (2, 10), (3, 5), (3, 12),

(4, 7), (4, 9), (5, 3), (5, 12), (6, 2), (6, 10),
(7, 4), (7, 9), (8, 1), (8, 11), (9, 4), (9, 7),
(10, 2), (10, 6), (11, 1), (11, 8), (12, 3),
(12, 5)

63.2� [501]
120� [�44�550]
180� [1221,627,592]

Figure 6
Composition table of the groupoid G�!� for a Burgers transition. The
table is deduced from Table 4 according to ðO�

m;O�
nÞ ! ðO

�
mÞ
�1O�

n =
fO�

qg = {O�
q} such that O�

q = �ij with �1i 2 O�
m and �1j 2 O�

n}. Only the
indices q of O�

q are noted in the table (O�
m and O�

n are in the first line and
first column, respectively). For each operator O�

m and O�
n , the

corresponding variants �i and �j such that O�
m = {�1i} and O�

n = {�1j} are
also reported.



operators are forced to be ambivalent, we find that NO�

= 6

with a NW OR and 17 with a KS OR, as published by Gour-

gues et al. (2000). All the parent crystals of two variants �1 and

�i, {�1, . . . , �k}, are determined by computation; we have

deduced that four and seven distinct variants determine

unambiguously the parent crystal for a NW OR and a KS OR,

respectively.

10. Applications and perspectives

This study generalizes the previous crystallographic studies on

the Landau transitions to any type of crystalline transitions

(Landau and reconstructive). We have introduced two

equivalence classes of transformation matrices (internal and

external) on the orientations of crystals and then we have

associated the geometric object ‘daughter crystal’ and the

algebraic object ‘coset’ into a unique object ‘orientational

variant’. We have defined the operators as classes of trans-

formations between variants and have identified them as

double cosets. We have shown that the set of variants and the

set of operators constitute a groupoid, which we have called a

groupoid of orientational variants. But what could be the

applications and implications of such concepts?

10.1. Reconstruction of parent grains from EBSD maps

This theoretical study takes its origin from an applied

materials science problem. We initially wanted to determine,

from EBSD maps acquired on different phase transition

materials (� titanium alloys used for space applications and

� steels used for nuclear applications) the size and the

orientation of the parent grains that have produced these

variants, i.e. the �-Ti and �-Fe grains, respectively. Some

studies of this problem already exist for Burgers transitions;

the method consists in calculating the disorientation between

two � grains and checking if it corresponds to a ‘special

misorientation’ (i.e. an operator of hO�
i). As we will explain

and quantify in Cayron et al. (2006), the probability of finding

an operator between two randomly oriented � crystals is low

for Burgers transitions but is far from being negligible for

martensitic transitions in steels. The only way to avoid abusive

grain regrouping is to check the coherency of all the � crystals

considered as variants at each step of the algorithm. This can

be performed with the help of the composition table of the

groupoid (x7.3), without solving any equation as in Gey &

Humbert (2003). For example, to know if three adjacent grains

are variants inherited from the same parent crystals, one must

check (i) if the misorientations between them correspond to

ones of the theoretical operators and (ii) if the composition of

the operators is coherent. In this way, if the grains G1, G2 and

G3 are found to be linked by the operators G12 = O�
1 , G13 = O�

4

and G23 = O�
6 , then since G23 = (G12)�1G13 2 ðO

�
1 Þ
�1O�

4 (see

Fig. 6), the triplet of operators is coherent. If grains G1, G2 and

G3 were found to be linked by the operators G12 = O�
1 , G13 =

O�
4 and G23 = O�

1 , the triplet is not coherent (see Fig. 6), so we

would be able to deduce that these grains are in fact acci-

dentally linked by misorientations close to operators. More

details will be given in Cayron et al. (2006).

10.2. Groupoids and complexity

It may be noticed that the algebraic structure describing the

‘general’ case of Fig. 1(a) is a group and the one describing the

‘particular’ cases of Figs. 1(b) and (c) is a groupoid, an alge-

braic structure that is more general than groups. This is a

surprising point; indeed, one could expect the opposite and

think that ‘particular’ cases are described by one subfamily of

the ‘general’ case. Two elements of response can be given.

1. If we link an orthogonal basis to the parent cubic crystal

and to the triangular daughter crystals (with the help of the

structure tensors, for example), T> can be substituted by a

rotation matrix R>. Then, the number of variants N� appears

as a function of �, the rotation angle of R>. In the case of Fig.

1, this function is always equal to 8, except for the rotation

angles � = N�/4 (with N integer), where N� is then reduced to

4. The function N�(�) appears as a Dirac comb with a period

T = �/4. Each Dirac � of this comb represents an ‘algebraic

structure breaking’ (with reference to the usual term

‘symmetry breaking’ used for phase transitions). Therefore,

the words ‘particular’ and ‘general’ probably do not have any

mathematical meaning in this case: Figs. 1(a) and (b) are

actually two distinct cases.

2. The fact that Fig. 1(a) seems geometrically ‘more

complex’ than Fig. 1(b) comes from its higher number of

triangles. However, this is only an apparent complexity.

Indeed, the number of components in a system is only one part

of its complexity; the interconnections between the compo-

nents are also very important (see for example Allegrini et al.,

2004). One may actually conceive that the structures of Figs.

1(b) and (c) are more complex than that of Fig. 1(a) because

these structures are ‘constrained’; any modification of �
degenerates the algebraic structure of Figs. 1(b) or (c) (a

groupoid) into a simpler one (a group). More studies would be

required to clearly define an ‘algebraic complexity’.

10.3. Transition cycles: irreversibility and entropy

For Landau transitions, as presented in x8.1, the number of

variants of the nth generation is always equal to 1: N�
2 = N�

3 =
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Table 5
For a Burgers transition �! �, list of the possible parent crystal {�j} of a pair of variants (�1, �i).

�1 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12

{�j} �1 . . .�6 �1 �1 �1 �3 �2 �1 �1 �6 �1 �1 �1 �1 �1 �1 �6

The variants �i that can have with �1 more than one parent crystal are recursively deduced, they are: {�1, �4} {�1, �6}, {�1, �12} and {�1, �6, �12}. For the variants {�1, �6, �12}, the two
possible parent crystals are �1 and �6: they are �3 twins (see Fig. 5).



. . . = N�
1 = N� = 1. Consequently, if only the orientations

are considered, the system remains algebraically stable (the

algebraic structure of the initial crystal, G�, and that of

orientational variants, V�, are isomorphic), and the physical

structure is recovered after one cycle. We conclude therefore

that Landau transitions are reversible during thermal cycling.

This implies that the irreversible part of the entropy variation

at each cycle is zero: �Si (one cycle) = 0. We recall that the

present system is open (and not isolated) and that �S =

�Se + �Si where �Se is the flow of entropy due to the heat

exchanges and �Si is the entropy production owing to

irreversible processes inside the system (Prigogine et al.,

1972).

However, the situation is completely different for recon-

structive transitions. For example, for Burgers transitions, one

monocrystal �1 can be transformed by cooling into 12 variants

by �1 ! �i and, if we re-heat the material, each variant

becomes the parent crystal for the transition �i ! �ki
such

that the number of variants of second generation is N�
2 = 40

(see x8.3). At each cycle of reconstructive transitions, more

and more variants are introduced, the complexity of the

system increases and the structure will never recover.

Consequently, we find algebraically that the reconstructive

transitions are intrinsically irreversible. The irreversible part

of the entropy variation on the first cycle is strictly positive:

�Si(1st cycle) > 0. For the moment, no general formula that

gives N�
2 could have been proposed. But is it possible to find

such a formula? More generally, how many variants do we

obtain after N cycles? What is their algebraic structure? The

number of distinct crystals increases after each cycle

ðN� � . . . � N�
n � N

�
nþ1Þ, but does it stabilizes for an nth

cycle? This would imply that �Si(nth cycle) = 0. This

problem constitutes a fascinating algebraic subject.

Experimentally speaking, if we heat and cool a phase-tran-

sition material around its transition temperatures (in order

to decrease its grain size and increase its mechanical prop-

erties) and perform X-ray diffraction, will we obtain an

isotropic (random) or textured pattern after a very high

number of cycles? Geometrically speaking, if we assume

that the crystals keep their size, we must study how to make

a three-dimensional pavement with two kinds of solids like

in a Penrose problem. If we assume that the variants are

smaller and smaller at each cycle (such as presented in

Fig. 4), the different generated variants will form a three-

dimensional fractal. For example, we will show in another

study (Cayron, 2006) that the �3n multiple twinning

in cubic materials can be algebraically represented by a

groupoid and geometrically by a three-dimensional

fractal.

We recall that the complexity of the structure produced by

reconstructive transitions comes from the fact that the

subgroup H� is not in general a normal group in G�, which is a

consequence of the non-commutativity between the transfor-

mation matrices. Therefore, it could be interesting to see if

some mathematical concepts developed in non-commutative

geometry (Connes, 1990) could be applied to describe math-

ematically the transition cycles.

11. Conclusions

In this study, � daughter crystals in an orientation relationship

with a � parent crystal have been defined from their orienta-

tions in a fixed reference basis with the help of transformation

matrices. They can be created by � ! � phase transitions

(Landau or reconstructive), by twinning or by precipitation.

We called T> one of the possible transformation matrices from

a basis of a parent crystal � to a basis of a daughter crystal �1.

Two equivalence classes on the transformation matrices have

been introduced: an internal class for the matrices that point to

the same crystal �i and an external class for the matrices that

point from the same crystal �. The set of internally and

externally equivalent transformation matrices are T>G� and

G�T>, respectively. These two classes are equal for matrices of

the intersection group H� = G�
\ T>G�T�1

> . The set of distinct

daughter crystals �i, denoted V�, has been identified as the

quotient set G�/H�. In this way, we have associated the

geometric notion of orientational variant �i with the algebraic

notion of left coset g�i H� and created a unique concept: the

orientational variants. Their number directly results from the

Lagrange formula N� = |G�|/|H�|. By considering the � ! �
and �! � transitions, we proved the isomorphism |H�|ffi |H�|,

and hence, that N�|G�| = N�|G�|. The transformations from

one variant to another were partitioned into distinct equiva-

lence classes. The set formed by these classes is isomorphic to

the set of the left H� orbits on the quotient set G�/H�, which is

the double quotient set H�\G�/H�. These orbits were called

‘operators’. Their number is given by the Burnside formula.

The set of orientational variants associated with the set of

operators constitutes a groupoid. We have proposed a

composition table for this groupoid that acts as a crystal-

lographic signature of the phase transition. A method to

determine if two daughter variants �i and �j can be inherited

from more than one parent crystal was given by calculating the

intersection of external orbits. A computer program has been

written to determine the variants, the operators, the compo-

sition table of the groupoid and the possible parent crystals for

any structural transition. Some results obtained with the

Burgers transition and with the martensitic transition in steels

are given and compared to published results. This work opens

the way for deeper algebraic researches on fractal structures

formed by reconstructive phase-transition materials after

thermal cycling. The complexity, irreversibility and entropy of

such systems were briefly discussed.

APPENDIX A
Elements of group theory

An equivalence relation � is a relation among elements a of a

set X satisfying: (a) reflexivity: a � a; (b) symmetricity: a � b

) b � a; (c) transitivity: a � b, b � c) a � c. An important

property of an equivalence relation is that it partitions the set

X into distinct equivalence classes Ca = {b 2 X, b � a} such

that for any (a, b) 2X2 either Ca = Cb or Ca \ Cb = ;. It may be

noted that this property is not linked to the algebraic structure

of the set X.
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A group is a nonempty set G together with a law of

composition (a, b) ! (ab): G � G ! G satisfying the

following axioms: (i) associativity: for all a, b, c 2 G, (ab)c =

a(bc); (ii) existence of an identity element: 9 e 2 G such that

for all a 2 G: ae = ea = a; and (iii) existence of inverses: for all

a 2 G, 9 a�1
2 G such that aa�1 = a�1a = e. We will use |G| to

denote, for a finite group G, the number of elements of G, also

called order of G. A subgroup H on a group G, denoted H �

G, is a nonempty subset of G such that (a) for (a, b) 2H2, ab 2

H and (b) for a 2 H, a�1
2 H. When specifying a group–

subgroup relation, the sign� is preferred to
 because a set X

can be included in a group G without being itself a subgroup

of G.

A homomorphism from a group (G, .) to a second group

(G0, *) is a map �: G! G0 such that, for all a, b 2 G, �(ab) =

�(a)*�(b). The image of � is defined as Im(�) = {g0 2 G0, 9 g 2

G with g0 = �(g)}. It is a subgroup of G0. The kernel of � is

defined as Ker(�) = {g 2 G, �(g) = e0} with e0 being the identity

element of G0. It is a subgroup of G. An isomorphism between

G and G0 is simply a bijective homomorphism (a one-to-one

map between G and G0). � is an isomorphism if and only if

Ker(�) = {e} and Im(�) = G0.

Let H be a subgroup of G. For any fixed a 2G, a left coset of

H in G is defined by the set of the form aH = {ah for h 2 H}.

Similarly, a right coset is defined by Ha = {ha for h 2H}. It can

be checked that (i) two left cosets are either disjoint or equal,

that (ii) aH = bH if and only if a�1b 2H, and that (iii) any two

left cosets have the same number of elements equal to |H|.

Similarly, two right cosets Ha = Hb if and only if ab�1
2 H.

The left and right cosets of H in G partition G. The

condition ‘a and b lie in the same left coset’ is a left class of

equivalence. We denote G/H the set of all the left cosets and

G\H the set of all the right cosets. Card(G/H), denoted |G/H|

or [G :H], is the number of left cosets of H in G, it is also equal

to the number of right cosets. A direct consequence of the

partitioning of G into left equivalence classes is the Lagrange

formula: for any H subgroup of a finite group G, the order of H

divides the order of G, i.e. |G| = |G/H||H|.

Two subgroups H1 and H2 are conjugate if 9g 2 G such that

H1 = gH2g�1. One may verify that the property ‘being

conjugate’ constitutes an equivalent class. A subgroup N of G

is normal (or invariant, or self-conjugated), denoted N / G, if

and only if, for all g 2 G, gNg�1 = N. This condition is also

equivalent to: for all g 2 G, gN = Ng or to: for all gN in G/N,

(gN)�1 = Ng�1. In other words, for a normal subgroup N, each

left coset of N in G is equal to a right coset of N in G. The

kernel of a homomorphism �: G!G0 is a normal subgroup of

G. If N /G, a natural composition law ‘.’ can be defined on G/

N the set of cosets of N in G by

for aN and bN 2 G=N : ðaNÞðbNÞ ¼ ðabÞN:

Indeed, the law ‘.’ is well defined (i.e. it does not depend on the

choice of the representative a in the equivalence class aN) and

it confers on G/N a natural group structure. Reciprocally, a

natural group structure exists on G/N only if N / G. In this

case, G/N is called the quotient group.

There are many important isomorphism theorems in group

theory that will not be described here. One of their corollaries

is the decomposition of a group into a direct product of two

subgroups – see for example Milne (2003): Consider two

subgroups H and K of a group G such that G = HK = {hk, h 2

H, k 2 K} and H \ K = {e}. Then:

(a) if H / G, then G/H is isomorphic to K; there is a one-to-

one correspondence between the left cosets and the elements

of K;

(b) if H / G and if K / G, then G is isomorphic to H � K =

{(h, k), h 2 H, k 2 K}; the group G can be canonically

decomposed as the product of the two subgroups H and K.

APPENDIX B
Groups and actions on sets

Let us now introduce some notions on groups acting on sets.

Let X be a set and G be a group. A left action of G on X,

denoted ‘.’, is a map (g, x)! g.x: (G, X)!X such that: e.x = x

for all x 2 X and (gh).x = g(h.x) for all gh 2 G and x 2 X.

For x and y 2 X, we write x �G y if and only if 9 g 2 G such

that y = g.x. It can be checked that this relation is an

equivalence relation on X. The left equivalence classes are

called the left G orbits. For a fixed x 2 X, we denote the left G

orbit containing x as

Ox ¼ fg:x for g 2 Gg:

Note that all the distinct G orbits partition X. The group G is

said to act transitively on X if there is only one orbit, i.e. if,

8 x, y 2 X, 9 g 2 G/y = g.x.

Let us call for any x 2 X, the stabilizer at the left of x:

StabGðxÞ ¼ fg 2 G; g:x ¼ xg:

It is a subgroup of G, also called the isotropy group. One can

then prove that, if G acts at the left on X, then the application

defined by g 2 G and x 2 X,

G=StabGðxÞ ! Ox

gStabGðxÞ ¼ fgg0; g0 2 StabGðxÞg ! g:x;

is a bijection. Therefore, jOx j = |G|/| StabG(x)|.

We call Oi all the G orbits in X and No their number:

X ¼
SNo

i¼1 Oi.

If we choose for each Oi a point xi 2 X such that Oi = Oxi
,

we obtain the class equation:

jXj ¼
PNo

i¼1

½G : StabGðxiÞ�

¼
PNo

i¼1

ni with ni ¼ jGj=jStabGðxiÞj 2 N:

Now let us introduce, for g 2G, FixX(g) = {x 2X/g.x = x}. Then
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X
g2G

jFixXðgÞj ¼
X
jfðg; xÞ 2 ðG� XÞ; g:x ¼ xgj

¼
X
x2X

jStabGðxÞj ¼
X
x2X

jGj

jOxj
¼
X
Oi
X

jGj
X
xi2Oi

1

jOxi
j

¼ jGj
X
Oi
X

1:

We obtain the Burnside formula giving the number of distinct

orbits by

No ¼
1

jGj

X
g2G

jFixXðgÞj:

The number of distinct orbits No is the average of the elements

fixed by the orbits.

For a subgroup H, the set of all g 2G such that gHg�1 = H is

called the normalizer of H in G and is denoted NG(H). For a

normal subgroup of G, NG(N) = G. Clearly, NG(H) is the

largest subgroup of G containing H as a normal subgroup. We

also call N0ðHÞ =
T

g2G gHg�1. It has been proved, see for

example Milne (2003), that N0(H) is the largest normal

subgroup contained in H.

Let us now consider two interesting examples of the class

equation (which will be used in the present study).

1. With X = {H, H � G} the set of all the subgroups of G,

then G acts on X by conjugation: for any g 2 G, g.H = gHg�1.

One may check that for this action the stabilizer is Stabc
GðHÞ =

NG(H). The superscript c means ‘by conjugation’. For a fixed

subgroup H of G, the number of distinct subgroups that are

conjugate is given by the class equation applied to X = {gHg�1,

g 2 G}, it is |G|/|NG(H)|.

2. With X = G/H, the partition formed by the left H cosets

on G, then:

(a) G acts on G/H by the classical left product: for any g0 2

G, g0�gH = g0gH. Note that, for this action, the stabilizer is

StabGðgHÞ = gHg�1, the conjugate of H by g and that in

general StabGðHÞ 6¼ Stabc
GðHÞ unless H / G. The class equa-

tion applied to G/H is equivalent to Lagrange’s formula.

(b) H acts at the left of G/H: for any h 2 H, h�gH = hgH.

Note that, for this operation, the stabilizer is StabHðgHÞ =

H \ gHg�1.

Thus, for any H � G and g 2 G,

feg � N0ðHÞ � StabHðgHÞ � H � NGðHÞ � G

and, if H = N / G,

N0ðHÞ ¼ StabHðgHÞ ¼ H and NGðHÞ ¼ G:
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